Role of Ligand-Driven Conformational Changes in Enzyme Catalysis: Modeling the Reactivity of the Catalytic Cage of Triosephosphate Isomerase

نویسندگان

  • Yashraj S Kulkarni
  • Qinghua Liao
  • Fabian Byléhn
  • Tina L Amyes
  • John P Richard
  • Shina C L Kamerlin
چکیده

We have previously performed empirical valence bond calculations of the kinetic activation barriers, Δ G‡calc, for the deprotonation of complexes between TIM and the whole substrate glyceraldehyde-3-phosphate (GAP, Kulkarni et al. J. Am. Chem. Soc. 2017 , 139 , 10514 - 10525 ). We now extend this work to also study the deprotonation of the substrate pieces glycolaldehyde (GA) and GA·HPi [HPi = phosphite dianion]. Our combined calculations provide activation barriers, Δ G‡calc, for the TIM-catalyzed deprotonation of GAP (12.9 ± 0.8 kcal·mol-1), of the substrate piece GA (15.0 ± 2.4 kcal·mol-1), and of the pieces GA·HPi (15.5 ± 3.5 kcal·mol-1). The effect of bound dianion on Δ G‡calc is small (≤2.6 kcal·mol-1), in comparison to the much larger 12.0 and 5.8 kcal·mol-1 intrinsic phosphodianion and phosphite dianion binding energy utilized to stabilize the transition states for TIM-catalyzed deprotonation of GAP and GA·HPi, respectively. This shows that the dianion binding energy is essentially fully expressed at our protein model for the Michaelis complex, where it is utilized to drive an activating change in enzyme conformation. The results represent an example of the synergistic use of results from experiments and calculations to advance our understanding of enzymatic reaction mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzyme relaxation in the reaction catalyzed by triosephosphate isomerase: detection and kinetic characterization of two unliganded forms of the enzyme.

Triosephosphate isomerase has been shown to exist in two unliganded forms, one of which binds and isomerizes (R)-glyceraldehyde 3-phosphate and the other of which binds and isomerizes dihydroxyacetone 3-phosphate. The tracer perturbation method of Britton demonstrates the kinetic significance of the interconversion of these two enzyme forms at high substrate concentrations and yields a rate con...

متن کامل

Enzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase

Triosephosphate isomerase (TIM) is a proficient catalyst of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde phosphate (GAP), via general base catalysis by E165. Historically, this enzyme has been an extremely important model system for understanding the fundamentals of biological catalysis. TIM is activated through an energetically demanding conformational ...

متن کامل

The adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes.

Crystals of triosephosphate isomerase from Trypanosoma brucei brucei have been used in binding studies with three competitive inhibitors of the enzyme's activity. Highly refined structures have been deduced for the complexes between trypanosomal triosephosphate isomerase and a substrate analogue (glycerol-3-phosphate to 2.2 A), a transition state analogue (3-phosphonopropionic acid to 2.6 A), a...

متن کامل

Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase

The side chains of Y208 and S211 from loop 7 of triosephosphate isomerase (TIM) form hydrogen bonds to backbone amides and carbonyls from loop 6 to stabilize the caged enzyme-substrate complex. The effect of seven mutations [Y208T, Y208S, Y208A, Y208F, S211G, S211A, Y208T/S211G] on the kinetic parameters for TIM catalyzed reactions of the whole substrates dihydroxyacetone phosphate and d-glycer...

متن کامل

Designing of Species-specific inhibition: The cysteine residues of triosephosphate isomerase

Enzymes from different species that have identical catalytic activities are usually very similar in their amino-acid sequences and three-dimensional structures. This is particularly true at the catalytic site, where the amino acids that form the active site and participate in catalysis are highly conserved. The similarities between homologous enzymes have hampered the design of species-specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2018